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ABSTRACT
We present a novel data visualization that displays the con-
tact trace of the spread of an infection. This visualization
presents the spread as a radial organizational chart, where
each node is an infected person, and the distance from the
root to a node is proportional to time. We use real regis-
tration information for a population of students at a small
college to generate a social network that is fed to an agent-
based simulator. The simulation implements the SIR model
to control how the infection moves from individual to an-
other. Contrarily to other models that generate expected
quantities, our tool displays scenarios of a typical outbreak,
where individual involved in the spread are identified, along
with the trace of their infection. The usefulness of our tool is
in illustrating at the micro level phenomena such as the ap-
pearance of super-spreaders, or the influence of interventions
such as quarantine or vaccination. We present several visu-
alizations corresponding to different SIR parameters, and
also illustrating the effect of vaccination.
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1. INTRODUCTION
In this paper we present a novel approach for visualizing the
contact-trace or contact-map[8] resulting from the spread
of an infectious disease in a population whose social net-
work [17, 13] is known a-priori. The contact maps are gen-
erated from the data created by an agent-based simulator
that uses the SIR model[2] and applies it to agents repre-
senting the students enrolled at Smith College (2,625 stu-
dents) during the fall semester of 2012, and for whom we
have obtained the complete individual course registration
(487 different courses), as well as their lodging information

for that semester (49 different dorms). Because students at
Smith College live on-campus, we can easily simulate their
every-day contacts during class, during meals, and during
study periods. The fine-grain simulation evolves on a one-
hour scale, and lasts the 14 weeks of a semester.

Our contact-map is a variant of radial organizational charts
[11], where a tree is shown with its root in the middle of
the graph, and all its descendants organized in a 360-degree
spread. In our implementation, each node of the tree is
a student, and the root is the first infected student. Edges
link students who directly infect other students, with the in-
fecter closer to the root than the infected. New for this type
of visualization, we set the length of an edge to be directly
proportional to the time it takes for an infected student to
infect another student. In the SIR model, somebody is in-
fected only if they are susceptible, after which point they
incubate the virus, and then become contagious for a given
period of time, after which they recover and are not conta-
gious any longer. Using time as the scale of the graph helps
better understand how quickly the outbreak expands, and
how long it lasts.

Different visualization attributes, such as node size and color,
as well as edge width are available to enhance various prop-
erties of the infectius spread. For example, the size of a node
can be made to vary proportionally to the number of other
students directly and indirectly infected by the student as-
sociated with that node (number of tree descendants).

The advantage of such a map is that it can help the contact-
tracing process at the beginning of an outbreak when a few
individuals in a real population are found to be infected. If
the social network of the whole population is known, then
possible scenarios for the spread of the infectious disease can
be plotted, and the efficacy of various preventive measures,
e.g. vaccination, or quarantine, can be evaluated through
simulation. The opportunity to assess visually the most
probable path taken by an infectious disease as it spreads
through a population is a beneficial complement to standard
contact investigative techniques.

The population used in our simulation is a closed population,
which we assume has no contact with the outside world. In
a way we simulate a campus without staff or faculty. While
it is a simplistic rendition of real life on campus, it does pro-
vide insights for important situations where the population
is isolated from the rest of the world, such as in hospitals, on



ships, or, in small towns, as have been investigated in [10,
18, 15].

When studying an infectious outbreak, health researchers
typically use stochastic models to assess the spread of a dis-
ease. Some tools use geographical information systems (see
[14] for an example of a visualization of heat-maps of the
spread of mosquito-based diseases), and others present sta-
tistical properties of the infected population over time. .
These tools provide for a good understanding of the overall
spread, but offer no knowledge of how the infection spreads
from one individual to the next. Figure1 shows an example
of our early research[12] on the agent-based model, and how
different simulation run can generate an average behavior
of the growth of the population of infected students under
different probabilities of infection. The ability to trace a
given individual and the spread of infection it creates, and
to observe how key agents appear and affect the infection,
such as super-spreaders[7], can help health professionals bet-
ter control infection outbreaks. Our model provides deeper
insights into the micro-level dynamics by presenting plausi-
ble contact-maps of a infection based on real social network
data.

In the next section, we review background information that
puts our research in context. In Section 2 we describe the
real data we use to drive our agent-based model, which is
presented in Section 3. In Section 4 we present several data-
visualizations illustrating how different SIR parameters or
interventions affect the contact map, and we provide an
analysis of the graphs in Section 5. Section 6 concludes
this paper.

1.1 Background
The major work that provides an overview of data visualiza-
tion techniques in the health field is that of Carroll et al[6]
who study a “myriad of new tools and algorithms [that] have
been developed to help public health professionals analyse
and visualize the complex data used in infectious disease
control.” Our visualization tool belongs in their social net-
work analysis section, which they report as one of the most
recent and growing fields of the health literature, account-
ing for approximately 10% of the total number of yearly
health publications. While the general purpose of the tools
surveyed is to address the identification of common char-
acteristics, such as risk stratification of contacts, identify-
ing common characteristics of those infected, visually com-
municating cases for improved understanding of outbreaks,
and identifying potential pathways of transmission, they note
that as network data becomes more available, new diverse
methods of visualization will be needed[6]. We suggest our
work fits in this arena.

Our work also parallels that of Hansen et al[10]. Their ap-
proach concentrates on visualizing possible scenarios of the
spread of an infectious disease in a hospital, presenting the
user with an interactive 3D graphic representation of the
floors and rooms of a hospital, and how the infection spreads
across the building. The data visualization is driven, as in
our case, by an agent-based simulator which is fed the real-
life records of the social contacts between health workers and
patients. While their visualization has the added advantage
of presenting the user with an interactive interface, it does

not display a contact trace of the infection, although they
very likely have access to the data needed to do so. We see
our work as a logical extension, or addition to theirs.

Our data-visualization is also reminiscent of the shortest-
path tree graph presented by Brokmann[4]. The nodes of
Brokmann’s tree are airports, and the edges are proportional
to the geographical distance separating these airports. In
contrast, the edges of our tree are proportional to time, and
the nodes are infected individuals. In some ways Brokmann’s
edges represent an approximation of time, as well, since
planes fly regularly from one airport to another, with ap-
proximately uniform speed. Our visualization allows an ex-
ploration on a much smaller scale than theirs, complement-
ing their work as well.

In the next section we present the social-network data used
in our simulation.

2. SOCIAL-NETWORK DATA
Our data is taken from a spreadsheet maintained by the Reg-
istrar’s office at Smith College which catalogs all classes for
which all 2,625 students registered during the Fall of 2012.
Each student is identified by a unique Id number. For each
student, we have a record of the dorm she resides in and the
courses for which she is registered. Each course has a unique
Id. A student typically takes four courses a semester, and for
each one we have available the daily/weekly time block(s)
in which the course meets. The buildings and classroom
numbers where the courses take place are also available. In
addition, the type of classroom meeting is also recorded,
e.g. studio, performance, lecture, lab, colloquium, discus-
sion, or seminar. We do not use this particular information,
but note that it could be used in future work to refine the
granularity of the simulation, for example in quarantine sce-
narios. We process this data and create exact lists of Ids of
students located in each classroom on campus in each time
block of the week. These lists of Ids associated to location
and time-blocks form the base of our social network. For
social connections outside class, we extrapolate the spread-
sheet data and assume that students will take their three
daily meals in the dorm in which they reside, and that they
also study in their dorm after dinner and on weekends. In
the next section we describe the discrete-event simulation
that processes the list of IDs and controls the state of each
student, or agent, as simulated time passes.

3. THE AGENT-BASED MODEL
The simulation keeps track of each student, or agent, during
her weekly schedule, and maintains a status of her health ac-
cording to the SIR model, where individuals evole through
an epidemic by transitioning through different states. In
the SIR model, somebody is initially assumed to be healthy
and Susceptible, then gets Infected, which results in an in-
cubation period Ti during which the student is not conta-
gious, followed by a period Tc where she becomes contagious,
which finally ends with the student healing and switching to
a Recovered state. We assume that students maintain their
regular activities while they are infected and contagious. In
our model, we also allow for a (small) probability pr for
recovered students to remain contagious.

When a susceptible student enters a location where conta-



Figure 1: Average of multiple simulation runs showing the growth of the infected population for different
probability of infection.

gious students are located, she experiences a probability p
to get infected by each one of them. Contagious students
can be those who have recently been infected, or those who
have recovered, but are still possibly lightly contagious (with
probability pr). In our SIR model, we assume that recovered
students are imunized to future infection by the same virus.

The simulation lasts for a simulated time equivalent to a
semester of 14 weeks, which matches exactly the duration of
a Smith College semester. A student is picked at random (or
not, if repeatable scenarios are of interest) at the beginning
of the simulation, T0, which coincides with the breakfast pe-
riod of the first day of class. As the infected student goes
about her daily schedule, she randomly infects the suscepti-
ble students who come in contact with her, in class, during
meals, or during study periods.

The simulator is written in Java and takes an average of 7.8
seconds to run one simulation to completion on a 2.4 GHz
Pentium Core i5 with 8 GB Ram. It generates a contact-
trace of the spread of the infection as a collection of tuples of
students Ids associated with a time. The time corresponds

to when the second student gets infected by the first one.
These tuples form the edges of a tree data structure, which
is recorded in DOT format[9], compatible with the Graphviz
visualization package[1].

In the next section we present several data visualizations
generated from the dot output of the simulator.

4. DATA VISUALIZATION
The graphs presented here are generated using dot (not to be
confused with the dot language), one of the applications of
the graphviz package. Dot takes the dot-formatted file gen-
erated by the simulator and creates a graphic file of the re-
sulting radial graph. We use the Scalable Vector Graphic[3]
(SVG) format for the graphic output to fully capture the de-
tails of such a large number of tree nodes and levels. Gener-
ating the SVG file typically takes an average of 5.5 seconds
on the same 2.4 GHz Pentium Core i5, and the resulting
graphic file is 5 to 10 MBytes in size.

Figure 2 shows the contact-map resulting from a simulation
where we set p=1.0, which ensures that if two students at-



tend the same class, or share a meal in the same cafeteria,
and one is infected, than the other automatically catches
the infection. p=1 also ensures that the whole population
gets infected (unless there exist subgroups of students who
never interact with the larger population of students). While
setting p to 1 is not a realistic situation, it presents the in-
teresting boundary-case scenario that would result from an
extraordinarily virulent infection. The parameters used in 2
are p=1, pr=0, Tc=8 days, and Ti=6 days.

Each graph also bares a time axis organized as a series of
arrows going from the center of the graph to the East, and
complements the graph. In Figure 2 the length of each ar-
row corresponds to 3 days. The largest concentric circle
has a radius of 21 days, indicating that the whole student
population is infected after 21 days.

The first infected student is at the center of the graph, and
its color is red. The size of a node is proportional to the
number of students infected by the student associated with
that node during the whole simulation. The radius of a
node is defined as radius = log(1+numberofdescendants)∗
0.35. Nodes other than the root are either orange of purple,
depending on whether they infect several people, or just one,
respectively. We note that most of the orange nodes fall on
the first concentric circle of the circular graph, and are the
largest of the tree, indicating that these students will behave
as super-spreaders, as they have more time than the others
to infect students they’ll come in contact with. Because the
time periods Tc and Ti are constant, and not taken from a
distribution, all the nodes fall exactly on a few concentric
circles, relative to the root.

Note also that the locations where the nodes are placed are
algorithmically picked for optimal use of the space by the
dot application, and slight variations in the tree may result
in significantly different looking graphs.

Figure 3 shows a close-up region of Figure 2, illustrating the
numbering of the nodes with the student Id, and the detail
of the time scale. Forcing the nodes to appear at particular
distances away from the root is a non-trivial task with dot,
and requires inserting many invisible dummy nodes between
student nodes.

When p is set to a more realistic value of 0.01, we obtain the
graph depicted in Figure 4. It now takes 36 simulated days
for the whole population to be infected, but the dynamics at
the beginning of the infection is more complex than observed
in Figure 2, with a distribution of differently sized super-
spreaders who start their infectious path around Days 15
and 18.

Finally, we show how the visualization can help health offi-
cials understand the effect of various interventions. In Fig-
ure 5 we assume that 50% of the initial population of stu-
dents is vaccinated at the beginning of the semester, and
that those vaccinated have a 0-probability of getting in-
fected, or of becoming carriers of the infection. Since the
visualization only shows infected students, Figure 5 con-
tains only half of the population of students, namely those
not vaccinated. The outbreak lasts 55 days, and a total
of 15% of the total student population gets infected during

this time, or 30% of the non-vaccinated students. Here again
we have very different dynamics at play, with a handful of
super-spreaders who propagate most of the infection; they
are the orange nodes appearing between the Day 24 and Day
36.

5. ANALYSIS
Our model and visualization present new insights in the way
an infectious disease spreads in a closed population for which
the social network is well defined. Each figure represents one
of many possible scenarios, and should not be seen as an av-
erage behavior; just a probable one. Because randomness
is use to decide on pair-wise infection when two students
occupy the same space, two different simulations with the
same initial parameters and root student will yield two dif-
ferent trees. Whether the simulated growth of the infected
population bears a chaotic component is open for research,
however, it is helpful to see the trees generated by the agent-
based simulator as different expressions of some dynamical
system, all with the same strange attractor [16]. Our data
visualizations present the micro-level dynamics of the infec-
tion, rather than a average variation of some quantity.

It is easy to see that given any infected student in the pop-
ulation, our model provides exact trace of who infects her,
and who she infects in turn. More over, the day and loca-
tion of the infection from one student to the other is known
exactly. Such information could easily be added to an inter-
active version of our visualizations.

Our visualizations also offer the ability for health officials
to investigate an infectious spread in its early stage, when
just a few students are found to be infected. Assuming the
social network for the population is available, a modified
data visualization can show the group of infected students
in a collective multi-node root of the tree, and the trace of
potential contacts emanating from it. Officials can then use
this information to order local quarantines or cancellation
of meetings in particular locations or time blocks.

Different visualization attributes, such as node size and color,
as well as edge width are available for enhancing various
properties of the infectious spread. We decided to use the
size of a node to grow proportionally to the number of other
students directly and indirectly infected by its associated
student. Interaction and animation could also enhance the
visualization; time-lapse growth of the tree, or selection of
particular branches or nodes, for example, could enhance
the usefulness of our tool. We note, however that the size of
the population makes it challenging to display the entirety
of the tree with good resolution.

6. CONCLUSIONS
In [6] Carroll et al. review visualization and analytical tools
for infectious disease, and state “visualization methods to
help users understand network structures [...] have not been
widely employed in tools for public health.” Our visualiza-
tion tool answers this call and presents a novel approach
for evaluating probable spreads of an infectious disease in a
closed population with a known social network.

The radial organizational of our visualization offers health
official a way of better understanding the dynamics of an



infection, and how different parameters such as vaccination,
or quarantine, can affect its spread, which we illustrated in
Figure 5.

Several improvements to the model are possible. For ex-
ample, we could take Ti and Tc from a distribution other
than the uniform distribution. We could also create super-
spreaders by picking several agents before or during the sim-
ulation, and by giving them an a-priori probability distribu-
tion for the virulence with which they act. Both the popu-
lation size of super-spreaders and their virulence can easily
be coded in the model. The model can also be augmented
so that various scenarios are triggered automatically when
a particular threshold of infection is detected in the simula-
tion. Such scenarios could involve the cancellation of classes
taking place in amphitheatres, or forcing students to eat
their meals in their dorm room.

We also noted earlier that an interactive visualization could
provide additional information that is available but impos-
sible to display on a static image. This include offering the
user an interactive menu to modify key SIR and visual pa-
rameters, as is presented in [5]. Other improvements in-
clude generating a full contact path between selected stu-
dents showing the identity of the students, the location and
time of the contacts.

Finally, we note that our visualization tool could be used
to evaluate various properties of key agents, such as super-
spreaders, and compare simulation outputs to real data in
an effort to find the model parameters best matching ob-
served behavior. We have however to take Carroll’s advice
seriously, when he and his coauthors state[6] that visualiza-
tion tools also risk misleading users due to misinterpretation
or cognitive overload. Sometimes, simpler is better.
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Figure 2: First infected is Student No. 82. Ti=6 days, Tc=8 days, no vaccination, no quarantine, p=1.0.



Figure 3: Close-up of Figure 1, showing details including node labeling and time scale.



Figure 4: Contact-map for p=0.01, Ti=6 days, and Tc=8 days.



Figure 5: Contact-map for p=0.01, Ti=6 days, and Tc=8 days, with 50% of the initial population vaccinated.
The probability that a vaccinated person is contagious is 0.


